ENVIRONMENTAL AUDIT REPORT

of

MIT ART, DESIGN AND TECHNOLOGY UNIVERSITY

Loni Kalbhor, Pune 412201

Year: 2021-22

Prepared by

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society
Near Muktangan English School, Parvati, Pune 411009
Phone: 09890444795, Email: engress123@gmail.com

REGISTRATION CERTIFICATES

Maharashtra Energy Development Agency

(Government of Maharashtra Institution)
Aundh Road, Opposite Spicer College Road, Near Commissionerate of Animal Husbandary,
Aundh, Pune, Maharashtra 411067
Ph No: 020-35000450
Email: eee@mahaurja.com, Web: www.mahaurja.com

MAHARASHTRA ENERGY DEVELOPMENT AGENCY

ECN/2022-23/CR-43/1709

10th May, 2022

CERTIFICATE OF REGISTRATION FOR CLASS 'A'

We hereby certify that, the firm having following particulars is registered with MAHARASHTRA ENERGY DEVELOPMENT AGENCY (MEDA) under given category as "Energy Planner & Energy Auditor" in Maharashtra for Energy Conservation Programme of MEDA.

Name and Address of the firm : M/s Engress Services

Yashshree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune – 411 009.

: Empanelled Consultant for Energy Conservation Registration Category

Programme for Class 'A'

Registration Number : MEDA/ECN/2022-23/Class A/EA-32.

- Energy Conservation Programme intends to identify areas where wasteful use of energy occurs and to evaluate the scope for Energy Conservation and take concrete steps to achieve the evaluated energy savings.
- MEDA reserves the right to visit at any time without giving prior information to verify quarterly activities performed by the firm and canceling the registration, if the information is found incorrect.
- This empanelment is valid till 09th May, 2024 from the date of registration, to carry out energy audits under the Energy Conservation Programme
- The Director General, MEDA reserves the right to cancel the registration at any time without assigning any reasons thereof.

General Manager (EC)

MEDA REGIATRATION CERTIFICATE

ASSOCHAM GEM CP CERTIFICATE

ENGRESS SERVICES

Yashashree, 26, Nirmal Bag Society, Near Muktangan English School, Parvati, Pune 411 009

Tel: 09890444795 Email: engress123@gmail.com

Ref: ES/MITADT/21-22/03 Date: 19/7/2022

ENVIRONMENTAL AUDIT CERTIFICATE

This is to certify that we have conducted Environmental Audit at MIT Art, Design and Technology University, Loni Kalbhor, Pune 412 201, in the year 2021-22.

The University has adopted following Environment Friendly Practices:

- Usage of Energy Efficient LED Fittings.
- Installation of 752.95 kWp Roof Top Solar PV Plant.
- Installation of 77500 LPD Solar Thermal Water Heating System at Hostel blocks.
- Usage of BEE STAR Rated Equipment
- Segregation of Waste at source
- Installation of Organic Composting Unit
- Tree Plantation in the Campus
- Usage of Battery Operated Vehicles in the campus
- Creation of awareness about Resource Conservation by displaying Posters

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation & making the campus Green & Eco Friendly.

For Engress Services,

A Y Mehendale,

Certified Energy Auditor, EA-8192

ASSOCHAM GEM Certified Professional: GEM: 22/788

INDEX

No	Particulars	Page No
I	Acknowledgement	5
II	Executive Summary	6
III	Abbreviations	8
1	Introduction	9
2	Study of Resource Consumption and CO ₂ Emission	12
3	Study of Usage of Renewable Energy	14
4	Study of Indoor Air Quality Parameters	16
5	Study of Indoor Comfort Condition Parameters	18
6	Study of Waste Management	19
7	Study of Rain Water Harvesting	21
8	Study of Eco Friendly & Sustainable Initiatives	22
	Annexure	
I	Indoor Air Quality, Noise & Indoor Comfort Standards	24
II	Water Quality Report	26

ACKNOWLEDGEMENT

We Engress Services, Pune, express our sincere gratitude to the management of MIT Art, Design and Technology University, Loni Kalbhor, Pune, for awarding us the assignment of Environmental Audit of their Loni Kalbhor Campus for the Year: 2021-22.

We are thankful to all Staff members for helping us during the field study.

EXECUTIVE SUMMARY

1. MIT Art, Design and Technology University, Loni Kalbhor, Pune consumes Energy in the form of Electrical Energy; used for various Equipment.

2. Pollution caused by Day to Day Operation:

• Air pollution: Mainly CO₂ on account of Electricity & LPG Consumption

• Solid Waste: Bio degradable Garden Waste, Recyclable Waste and Human Waste

• Liquid Waste: Human liquid waste

3. Present Energy Consumption & CO₂ Emission:

No	Parameter/ Value	Energy Purchased, kWh	CO₂ Emissions, MT
1	Total	3615957	3254.36
2	Maximum	448101	403.29
3	Minimum	166305	149.67
4	Average	301329.75	271.20

4. Usage of Renewable Energy & CO₂ Emission Reduction:

- The University has installed Roof Top Solar PV Plant of Capacity **752.95 kWp**.
- Energy generated by Solar PV Plant in 21-22 is 826534 kWh.
- Total Annual Reduction in CO₂ Emissions in 21-22 is **743.88 MT**.

5. Indoor Air Quality Parameters:

No	Parameter/ Value	AQI	PM-2.5	PM-10
1	Maximum	66	39	49
2	Minimum	44	28	31

6. Indoor Comfort Conditions:

No	Parameter/ Value	Temperature, ⁰ C	Humidity, %	Lux Level,	Noise Level, dB
1	Maximum	27	39.1	469	49
2	Minimum	24	37.9	126	42

7. Waste Management:

7.1 Segregation of Waste at Source:

The Waste is segregated at source by provision of Waste Bins at various locations.

7.2 Organic Waste Management:

The University has installed Organic Waste converting Unit, to convert the Bio degradable Waste into Bio Compost

7.3 Liquid Waste Management:

The University is constructing Sewage Treatment Plant for treatment of Black Water.

7.4 E Waste Management:

It is recommended to dispose of the E Waste through Authorized Agency

8. Rain Water Management:

The University is in process of installation of Rain Water Management Project

9. Eco Friendly Practices:

- The University has well maintained lawn and landscaped garden.
- There are about **4000 plus** Trees in the campus
- Usage of Battery operated vehicles for transportation within the campus.
- Creation of awareness on Resource Conservation, by Display of Posters

10. Assumption:

1 kWh of Electrical Energy releases 0.9 Kg of CO₂ into atmosphere.

11. Reference:

- 1. For Computation of CO₂ Emissions: www.tatapower.com
- 2. For Indoor Air Quality:www.cpcb.com
- 3. For Indoor Comfort Parameters:www.ishrae.com
- 4. For Energy Generated by Solar PV Plant: www.solarroftop.gov.in

ABBREVIATIONS

ADT : Art, Design and Technology

MANET : Maharashtra Academy of Naval Education & Training

CPCB : Central Pollution Control Board

ISHARE : The Indian Society of Heating & Refrigerating & Air Conditioning Engineers

AQI : Air Quality Index

PM2.5 : Particulate Matter of Size 2.5 microns
PM 10 : Particulate Matter of Size 10 microns

kWh : kilo-Watt HourkWp : Kilo Watt Peak

Qty : Quantity W : Watt

kW : Kilo Watt
MT : Metric Ton

LPD : Liters Per Day

LPG : Liquefied Petroleum Gas

CHAPTER-I INTRODUCTION

1.1 Important Definitions:

1.1.1 Environment: Definition as per environment Protection Act: 1986

Environment includes water, air and land and the inter-relationship which exists among and between Water, Air, Land and Human beings, other living creatures, plants microorganism and property

1.1.2. Environmental Audit: Definition:

An audit which aims at verification and validation to ensure that various environmental laws are compiled with and adequate care has been taken towards environmental protection and preservation. According to UNEP, 1990, "Environmental audit can be defined as a management tool comprising systematic, documented and periodic evaluation of how well environmental organization management and equipment are performing with an aim of helping to regularize the environment

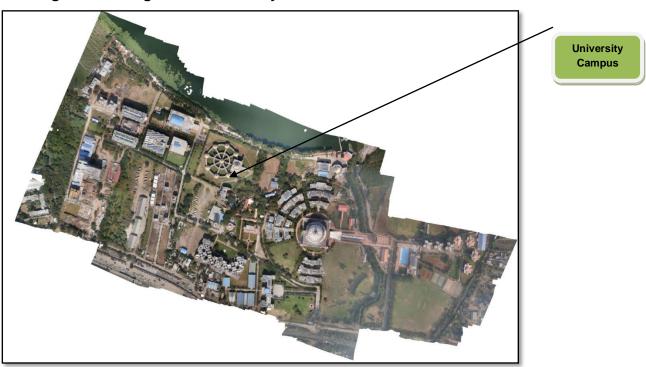
1.1.3. Environmental Pollutant: means any solid, liquid and gaseous substance present in the concentration as may be, or tend to be, injurious to Environment.

Table No-1: Relevant Environmental Laws in India:

1927	The Indian Forest Act
1972	The Wildlife Protection Act
1974	The Water (Prevention and Control of Pollution) Act
1977	The Water (Prevention & Control of Pollution) Cess Act
1980	The Forest (Conservation) Act
1981	The Air (Prevention and Control of Pollution) Act
1986	The Environment Protection Act
1991	The Public Liability Insurance Act
2002	The Biological Diversity Act
2010	The National Green Tribunal Act

Table No-2: Some Important Environmental Rules in India:

1989	Hazardous Waste (Management and Handling) Rules
1989	Manufacture, Storage and Import of Hazardous Chemical Rules
2000	Municipal Solid Waste (Management and Handling) Rules
1998	The Biomedical Waste (Management and Handling) Rules
1999	The Environment (Siting for Industrial Projects) Rules
2000	Noise Pollution (Regulation and Control) Rules
2000	Ozone Depleting Substances (Regulation and Control) Rules
2011	E-waste (Management and Handling) Rules
2011	National Green Tribunal (Practices and Procedure) Rules
2011	Plastic Waste (Management and Handling) Rules


Table No-3: National Environmental Plans & Policy Documents:

1.	National Forest Policy, 1988
2.	National Water Policy, 2002
3.	National Environment Policy or NEP (2006)
4.	National Conservation Strategy and Policy Statement on Environment and Development, 1992
5.	Policy Statement for Abatement of Pollution (1992)
6.	National Action Plan on Climate Change
7.	Vision Statement on Environment and Human Health
8.	Technology Vision 2030 (The Energy Research Institute)
9.	Addressing Energy Security and Climate Change (MoEF and Bureau of Energy Efficiency
10	The Road to Copenhagen; India's Position on Climate Change Issues (MoEF)

1.2 Objectives:

- 1. To study Consumption of various Resources & CO₂ Emissions
- 2. To Study Usage of Renewable Energy & CO₂ Emission Reduction
- 3. To Study Indoor Air Quality
- 4. To Study Indoor Comfort Condition Parameters
- 5. To Study Waste Management Practices
- 6. To Study Rain Water Harvesting
- 7. To study Eco Friendly & Sustainable Initiatives

1.3 Google Earth Image of the University:

1.4 Table No 4: General Details of University:

No	Head	Particulars
1	Name of Institution	MIT Art Design and Technology University
2	Address	Loni Kalbhor, Pune 412 201
3	Latitude / Longitude	18.49° / 74.02°

CHAPTER-II STUDY OF RESOURCE CONSUMPTION & CO₂ EMISSION

- **2.1** The University consumes following Natural/derived Resources:
 - 1. Air
 - 2. Water
 - 3. Electrical Energy

We try to draw a schematic diagram for the Institute System & Environment as under.

2.2 Representation of University as a System:

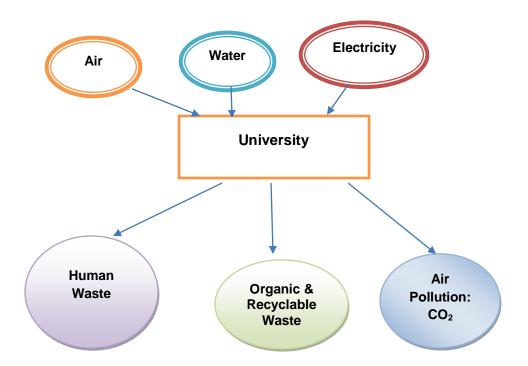


Chart No 1: Representation of University as a System & Environment

2.3 Computation of CO₂ Emissions: A Carbon Foot print is defined as the Total Greenhouse Gas Emissions, emitted due to various activities. In this we compute the emissions of Carbon-Di-Oxide, by usage of the various forms of Energy used by the University for performing its day to day activities. The University uses Electrical Energy for day to day activities.

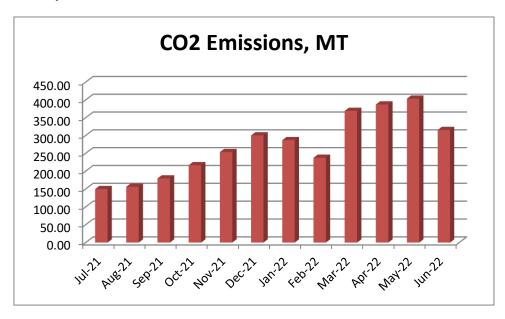

Basis for computation of CO_2 Emissions: 1 kWh of Electrical Energy releases 0.9 Kg of CO_2 into atmosphere

Table No 5: Month wise CO₂ Emissions:

No	Month	Energy Purchased- Meter-1, kWh	Energy Purchased, Meter-2, kWh	Total Energy Purchased, kWh	CO₂ Emissions, MT
1	Jul-21	92001	74304	166305	149.67

2	Aug-21	97300	76268	173568	156.21
3	Sep-21	109147	90151	199298	179.37
4	Oct-21	126712	113742	240454	216.41
5	Nov-21	137671	143775	281446	253.30
6	Dec-21	160813	172813	333626	300.26
7	Jan-22	171943	146826	318769	286.89
8	Feb-22	121060	142599	263659	237.29
9	Mar-22	193201	216964	410165	369.15
10	Apr-22	184975	245146	430121	387.11
11	May-22	223056	225045	448101	403.29
12	Jun-22	164420	186025	350445	315.40
13	Total	1782299	1833658	3615957	3254.36
14	Maximum	223056	245146	448101	403.29
15	Minimum	92001	74304	166305	149.67
16	Average	148524.9167	152804.83	301329.75	271.20

Chart No 2: Representation of Month wise CO₂ Emissions:

Table No 6: Various Important Parameters:

No	Parameter/ Value	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Total	3615957	3254.36
2	Maximum	448101	403.29
3	Minimum	166305	149.67
4	Average	301329.75	271.20

CHAPTER-III STUDY OF USAGE OF RENEWABLE ENERGY

The University has installed Roof Top Solar PV Plant, on various buildings as well as Solar Water Heating System on Hostel Blocks. In the following Table, we present the details of Building wise Solar PV Plants installed and Solar Thermal Water Heating Systems installed.

Table No 7: Details of Building wise Roof Top Solar PV Plant:

No.	Building Name	Installed Capacity, kW	Average Energy Generation, (Per year) KWh
1	MANET Administration Building	108.0	118,389.60
0	MANET Hostel Building (ABC Block)	80.8	88,740.00
2	MANET Hostel Building (DEF Block)	80.8	88,740.00
4	MITSOER Building	54.0	59,194.80
5	Boat club Building	54.0	59,194.80
6	Carpenter Shed	27.0	29,649.60
7	Health Club or Sports Complex	54.0	59,194.80
8	Raj Auditorium or Amphi Theatre	54.0	59,194.80
9	School of Film and Television Building (1st Floor & 2nd Floor)	66.5	73,080.00
	MIT ISBJ (3rd Floor & 4th Floor)	66.5	73,080.00
10	IT Establishment SOE (Gr to 6th	35.2	38,628.00
10	MIT COM (7 & 8 Floor)	8.6	9,500.40
10	Bakery Shade	47.5	52,200.00
11	Staff Quarter Loni	16.2	17,748.00
	Total	752.95	826,534.80

Table No 8: Details of Solar Thermal Water Heating Systems installed:

No	Location	Capacity in LPD
1	MANET-Hostel- G	6000
2	MANET-Hostel- E	5000
3	MANET-Hostel- F	5000
4	Guest House Building	2500
5	Staff Quarter-1	5000
6	Design College- Girls Hostel	36000
7	Design College- Boys Hostel	18000
8	Total	77500

In the following Table, we present the reduction in Annual CO2 Emissions due to Solar Energy.

Table No 9: Computation of Reduction in CO₂ Emissions:

No	Particulars	Value	Unit
1	Installed Solar PV Plant Capacity	752.95	kWp
2	Annual Electrical Energy generated by Solar PV Plant	826534	kWh
3	1 kWh of Electrical Energy is equivalent to	0.9	Kg of CO ₂
4	Reduction in CO ₂ Emissions = (2)*(3)/1000	743.88	МТ

Photograph of Solar PV Plant & Solar Thermal Water Heating System:

CHAPTER IV STUDY OF INDOOR AIR QUALITY PARAMETERS

4.1 Importance of Air Quality:

Air: The common name given to the atmospheric gases used in breathing and photosynthesis.

By volume, Dry Air contains 78.09% Nitrogen, 20.95% Oxygen, 0.93% Argon, 0.039% carbon dioxide, and small amounts of other gases.

On average, a person inhales about **14,000 liters** of air every day. Therefore, poor air quality may affect the quality of life now and for future generations by affecting the health, the environment, the economy and the city's livability.

Rapid urbanization and industrialization has added other elements/compounds to the pure air and thus caused the increase in pollution. In order to prevent, control and abate air pollution, the Air (Prevention and Control of Pollution) Act was enacted in 1981.

Air quality is a measure of the suitability of air for breathing by people, plants and animals.

According to Section 2(b) of Air (Prevention and control of pollution) Act, 1981 'air pollution' has been defined as 'the presence in the atmosphere of any air pollutant.'

As per Section 2(a) of Air (Prevention and control of pollution) Act, 1981 'air pollutant' has been defined as 'any solid, liquid or gaseous substance [(including noise)] present in the atmosphere in such concentration as may be or tend to be injurious to human beings or other living creatures or plants or property or environment

4.2 Air Quality Index:

An **Air Quality Index (AQI)** is a number used by government agencies to measure the **air pollution** levels and communicate it to the population. As the AQI increases, it means that a large percentage of the population will experience severe adverse health effects. The measurement of the **AQI** requires an **air monitor** and an **air pollutant** concentration over a specified **averaging period**.

We present herewith following important Parameters.

- 1. AQI- Air Quality Index
- 2. PM-2.5- Particulate Matter of Size 2.5 micron
- 3. PM-10- Particulate Matter of Size 10micron

Table No10: Indoor Air Quality Parameters:

No	Location	AQI	PM-2.5	PM-10
1	Computer Lab-MANET	65	39	44
2	MANET Workshop-1	60	34	38

3	MANET-Workshop-2	55	31	34
4	Bio Engineering	31	19	20
5	Design, Architecture & Fine Arts	65	38	48
6	School of Film & Television	50	31	32
7	Sangeet	45	28	31
8	Vedic Science	95	54	66
9	Engineering & I T Building	60	36	38
10	Workshop-Engineering	56	34	36
	Maximum	66	39	49
	Minimum	44	28	31

CHAPTER V STUDY OF INDOOR COMFORT CONDITION

In this Chapter, we present the various Indoor Comfort Parameters measured during the Audit.

The Parameters include:

- 1. Temperature
- 2. Humidity
- 3. Lux Level
- 4. Noise Level.

Table No11: Study of Indoor Comfort Parameters:

No	Location	Temperature, ⁰ C	Humidity, %	Lux Level	Noise Level, dB
1	Computer Lab-MANET	24	39	469	45
2	MANET Workshop-1	24.1	39	325	44
3	MANET-Workshop-2	24.9	39.1	227	42
4	Bio Engineering	24	39	126	42
5	Design, Architecture & Fine Arts	24.3	38.1	169	46
6	School of Film & Television	24.5	38	175	49
7	Sangeet	24.6	37.9	165	47
8	Vedic Science	25	38.1	196	46
9	Engineering & I T Building	25.1	38.2	201	48
10	Workshop-Engineering	27	38.4	221	47
	Maximum	27	39.1	469	49
	Minimum	24	37.9	126	42

CHAPTER VI STUDY OF WASTE MANAGEMENT

6.1 Segregation of Waste at Source:

At important locations, Waste collections Bins are placed in order to segregate the Waste at source. The University has dedicated House Keeping Department.

Photograph of Waste Collection Bins:

6.2 Organic Waste Management:

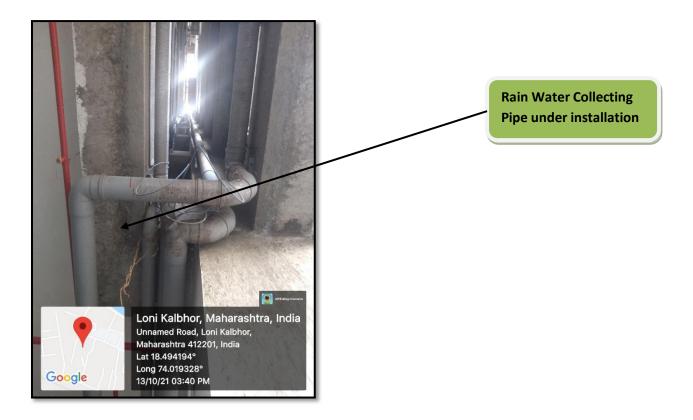
The University has installed Organic Waste Converter to convert the Bio Degradable / Organic Waste into Bio fertilizer. This is either sold to adjacent farmers and or used in the own garden.

Photograph of Organic Waste Converter Unit:

6.3 Liquid Waste Management:

The University is in a process of installing Sewage Treatment Plant near the Staff Quarter.

6.4 E-Waste Management:


It is recommended to dispose of the E-Waste generated through Authorized Vendors.

:

CHAPTER VII STUDY OF RAIN WATER HARVESTING

The University is installing Rain Water management project at the Engineering & I T Building.

Photograph of Rain Water Collecting Pipe at I T Building:

CHAPTER VIII STUDY OF ENVIRONMENT FRIENDLY INITIATIVES

8.1 Internal Lawn & Tree Plantation:

The University has well maintained Lawn & internal Tree Plantation. There are about 4000 Plus Trees in the Campus.

Photograph of Lawn & Tree Plantation:

8.2 Usage of Battery Operated Vehicles:

The University is making use of Battery Operated Vehicles for transportation in the campus.

8.3 Creation of Awareness about Importance of Resource Conservation:

In order to create awareness among the stake holders about the Conservation of various resources like Electricity, posters are displayed at various locations.

Photograph of Poster on Energy Conservation:

ANNEXURE-I:

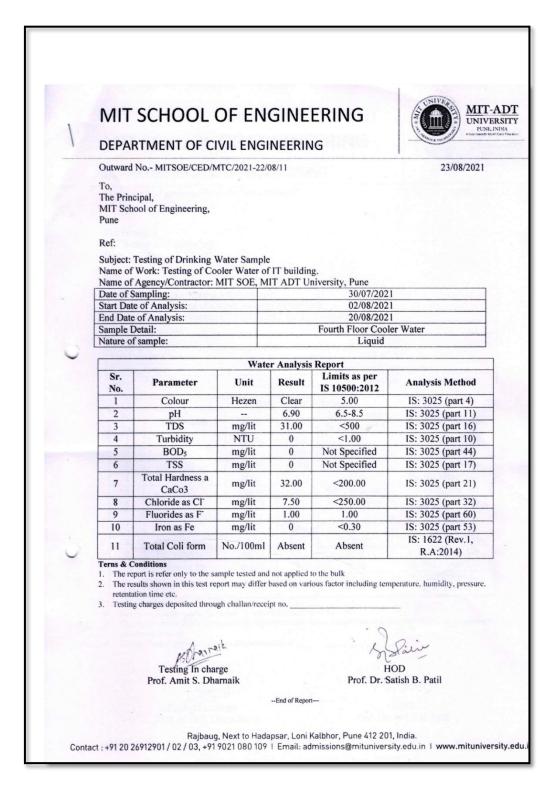
AIR QUALITY, WATER QUALITY, NOISE & INDOOR COMFORT STANDARDS:

1. Category Wise Air Quality Index Values & Concentration of PM 2.5 & PM10:

No	Category	AQI Value	Concentration Range, PM 2.5	Concentration Range, PM 10
1	Good	0 to 50	0 to 30	0 to 50
2	Satisfactory	51 to 100	31 to 60	51 to 100
3	Moderately Polluted	101 to 200	61 to 90	101 to 250
4	Poor	201 to 300	91 to 120	251 to 350
5	Very Poor	301 to 400	121 to 250	351 to 430
6	Severe	401 to 500	250 +	430 +

2. Recommended Water Quality Standards:

No	Designated Best Use	Criteria
1	Drinking Water Source without conventional Treatment but after disinfection	pH between 6.5 to 8.5 Dissolved Oxygen 6 mg/l or more
2	Drinking water source after conventional treatment and disinfection	pH between 6 to 9 Dissolved Oxygen 4 mg/l or more
3	Outdoor Bathing (Organized)	pH between 6.5 to 8.5 Dissolved Oxygen 5 mg/l or more
4	Controlled Waste Disposal	pH between 6 to 8.5


3. Recommended Noise Level Standards:

No	Location	Noise Level dB
1	Auditoriums	20-25
2	Outdoor Playground	55
3	Occupied Class Room	40-45
4	Un occupied Class Room	35
5	Apartment, Homes	35-40
6	Offices	45-50
7	Libraries	35-40
8	Restaurants	50-55

4. Thermal Comfort Conditions: For Non-conditioned Buildings:

No	Parameter	Value	
1	Temperature	Less Than 33°C	
2	Humidity	Less Than 70%	

ANNEXURE- II WATER ANALYSIS REPORT

